Sashital lab publications (link to Google Scholar)
Nguyen, G.T., Raju, A., Schelling, M.A. and D.G. Sashital. (2025) Rapid CRISPR-Cas9 target-strand nicking can provide phage resistance by reducing DNA abundance. Nucleic Acids Res, gkaf900. link
Previous version (preprint) bioRxiv link
Nguyen, G.T., Raju, A., and D.G. Sashital. (2025) Analysis of metal-dependent DNA nicking activities by Cas endonucleases. Methods Enzymol, 712:117-142. link($)
Nguyen, G.T.‡, Schelling, M.A. ‡, Raju, A., Buscher, K.A., Sritharan, A. and D.G. Sashital. (2024) CRISPR-Cas12a exhibits metal-dependent specificity switching. Nucleic Acids Res, gkae613. ‡Equal contribution link
Previous version (preprint) bioRxiv link
Dhingra, Y. and D.G. Sashital. (2023) A tool for more specific DNA integration. Science, 382:768-69. Preview Article. link($)
Adler, B.A.‡, Trinidad, M.I.‡, Bellieny-Rabelo, D., Zhang, E., Karp, H.M., Skopintsev, P., Thornton, B.W., Weissman, R.F., Yoon, P.H., Chen, L., Hessler, T., Eggers, A.R., Colognori, D., Boger, R., Doherty, E.E., Tsuchida, C.A., Tran, R.V., Hofman, L., Shi, H., Wasko, K.M., Zhou, Z., Xia, C., Al-Shimary, M.J., Patel, J.R., Thomas, V.C.J.X., Pattali, R., Kan, M.J., Vardapetyan, A., Yang, A., Lahiri, A., Maxwell, M.F., Murdock, A.G., Ramit, G.C., Henderson, H.R., Calvert, R.W., Bamert, R.S., Knott, G.J., Lapinaite, A., Pausch, P., Cofsky, J.C., Sontheimer, E.J., Wiedenheft, B., Fineran, P.C., Brouns, S.J.J., Sashital, D.G., Thomas, B.C., Brown, C.T., Goltsman, D.S.A., Barrangou, R., Siksnys, V., Banfield, J.F., Savage, D.F. and J.A. Doudna. (2023) CasPEDIA Database: a functional classification system for class 2 CRISPR-Cas enzymes. Nucleic Acids Res, 42:D590-D596. ‡ Equal contribution link
Dhingra, Y. and D.G. Sashital. (2023) Cas4/1 dual nuclease activities enable prespacer maturation and directional integration in a type I-G CRISPR-Cas system. J Biol Chem, 299:105178. link
Previous version (preprint) bioRxiv link
Schelling, M.A., Ngyuen, G.T., & D.G. Sashital. (2023) CRISPR-Cas effector specificity and cleavage site determine phage escape outcomes. PLoS Biol, 21:e3002065. link
Previous version (preprint) bioRxiv link
Dhingra, Y., Suresh, S.K., Juneja, P. & D.G. Sashital. (2022) PAM binding ensures orientational integration during Cas4-Cas1-Cas2 mediated CRISPR adaptation. Mol Cell, 82:4353-4367. link
Previous version (preprint) bioRxiv link
Nguyen G.T., Dhingra Y., & D.G. Sashital. (2022) Miniature CRISPR-Cas12 endonucleases - Programmed DNA targeting in a smaller package. Curr Opin Struct Biol. 77:102466. Review Article. link
Lee, H. & D.G. Sashital. (2022) Creating memories: Molecular mechanisms of CRISPR adaptation. Trends Biochem Sci. 47:464-76. Review Article. link($)
Murugan, K., Suresh, S.K., Seetharam, A.S., Severin, A.J. & D.G. Sashital. (2021) Systematic in vitro specificity profiling reveals nicking defects in natural and engineered CRISPR–Cas9 variants. Nuc Acids Res. 49, 4037-53. link
Previous version (preprint) bioRxiv link
Dhingra, Y. & D.G. Sashital. (2020) Updating the CRISPR Catalogue. CRISPR J, 3: 78-80. Preview Article. link
Schelling, M.A. & D.G. Sashital. (2020) An adaptable defense. eLife, e56122. Preview Article. link
Murugan, K., Seetharam, A.S., Severin, A.J., & Sashital, D.G. (2020) CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem 295: 5538-53. link
Previous version (preprint) bioRxiv, 657791. link
Lee, H., Dhingra, Y., & Sashital, D.G.. (2019) The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation. eLife. e44248. link
Suresh, S.K., Murugan, K., & Sashital, D.G.. (2019) Enzymatic anti-CRISPRs improve the bacteriophage arsenal. NSMB. 26, 250-251. News & Views article. link($)
Xue, C. & Sashital, D.G.. (2019) Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus. 8. Review article. link ($)
Phan, P., Schelling, M., Xue, C., & Sashital, D.G.. (2018) Fluorescence-based methods for measuring target interference by CRISPR–Cas systems. Methods in Enzymol. 616, 61-85. link($)
Mekler, V., Kuznedelov, K., Minakhin, L., Murugan, K., Sashital, D.G., & Severinov, K. (2018) CRISPR–Cas molecular beacons as tool for studies of assembly of CRISPR–Cas effector complexes and their interactions with DNA. Methods in Enzymol. 616, 337-363. link($)
Davis-Vogel, C., Van Allen, B., Van Hemert, J.L., Sethi, A., Nelson, M.E., & Sashital, D.G.. (2018) Identification and comparison of key RNA interference machinery from western corn rootworm, fall armyworm, and southern green stink bug. PLoS One. 13:e0203160. link
Davis-Vogel, C., Ortiz, A., Procyk, L., Robeson, J., Kassa, A., Wang, Y., Huang, E., Walker, C., Sethi, A., Nelson, M.E., & Sashital, D.G.. (2018) Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm. Sci Rep. 8, 7858. link
Sashital, D.G. (2018) Pathogen detection in the CRISPR-Cas era. Genome Med, 10, 32. Preview Article link
Lee, H., Zhou, Y., Taylor, D.W., & Sashital, D.G. (2018) Cas4-Dependent Prespacer Processing Ensures High-Fidelity Programming of CRISPR Arrays. Mol Cell. 70, 1-12. link
Xue, C., Zhu, Y., Zhang, X., Shin, Y.K., & Sashital, D.G. (2017) Real-time observation of target search by the CRISPR surveillance complex Cascade. Cell Rep. 21, 3717-3727. link
Murugan K., Babu K., Sundaresan R., Rajan R., & Sashital D.G. (2017) The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol Cell. 68, 15-25. Review Article link
Sashital, D.G. (2017) Prokaryotic Argonaute Uses an All-in-One Mechanism to Provide Host Defense. Mol Cell. 65, 957-958. Preview Article link
Xue, C., Whitis, N.R., & Sashital, D.G. (2016) Conformational Control of Cascade Interference and Priming Activities in CRISPR Immunity. Mol Cell. 64, 1-9. link
Wolt, J.D., Wang, K., Sashital, D.G., & Lawrence-Dill, C.J. (2016) Achieving Plant CRISPR Targeting that Limits Off-Target Effects. Plant Genome. 9. Review Article link
Xue, C., Seetharam, A.S., Musharova, O., Brouns, S.J.J., Severinov, K., Severin, A.J., & Sashital, D.G. (2015) CRISPR interference and priming varies with individual spacer sequences. Nuc Acids Res. 43, 10831-47. link
Pre-ISU publications
Sashital, D.G.*, Greeman, C.A.*, Lyumkis, D., Potter, C.S., Carragher, B., & Williamson, J.R. (2014) A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. eLife. 3:e04491. *Equal contribution link
Sashital, D.G., Wiedenheft, B., & Doudna, J.A. (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. 46, 606-15. link
Burke, J.E., Sashital, D.G., Zuo, X., Wang, Y., & Butcher, S.E. (2012) Structure of the yeast U2/U6 snRNA complex. RNA. 18, 673-83. link
Sashital, D.G., Jinek, M., & Doudna, J.A. (2011) An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol. 18, 680-7. link($)
Sashital, D.G. & Doudna, J.A. (2010) Structural insights into RNA interference. Curr Opin Struct Biol, 20, 90-7. Review Article link
Sashital, D.G. & Butcher, S.E. (2007) Is the spliceosome a ribozyme? In D.M.J. Lilley and F. Eckstein (Eds.), Ribozymes and RNA catalysis (pp. 253-266). Cambridge: The Royal Society of Chemistry. Book Chapter
Sashital, D.G., Venditti, V., Angers, C.G., Cornilescu, G., & Butcher, S.E. (2007) Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human. RNA, 13, 328-38. link
Sashital, D.G. & Butcher, S.E. (2006) Flipping off the riboswitch: RNA structures that control gene expression. ACS Chem Biol, 1, 341-5. Preview Article link($)
Sashital, D.G., Cornilescu, G., McManus, C.J., Brow, D.A. & Butcher, S.E. (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol, 12, 1237-42. link($)
Sigel, R.K., Sashital, D.G., Abramovitz, D.L., Palmer, A.G., Butcher, S.E., & Pyle, A.M. (2004) Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif. Nat Struct Mol Biol, 11, 187-92. link($)
Sashital, D.G., Allmann, A.M., Van Doren, S.R., & Butcher, S.E. (2003) Structural basis for a lethal mutation in U6 RNA. Biochemistry, 42, 1470-7. link